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Fig. 5. Error probability as  a function of threshold setting. 
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Fig. 6 .  Error probability as a function of sampling time. 

see  that  (20)  is  overoptimistic  for E/No > 21  dB  and 
overpessimistic  for E/No < 21  dB. 

The  optimization  of to and thr was  performed  by  varying 
these  parameters  until  a  minimal  value  of P(e) was  obtained. 
Thus, in  Figs. 5 and 6 we  show  the  sensitivity  of  the  error 
probability  to  the  threshold  setting  and sampling  time 
variation  for B = 1.5  and  2.0. 

In order  to  compare  the  quaternary  and  binary  system,  we 
have  to  restate  Fig. 4 in terms  of bit error probability  and 
signal-to-noise  ratio  per  bit.  The  binary  case  is  actually 
already  stated  in  these  terms. For quaternary  symbols  the 
symbol  energy E is related to  the bit  energy Eb by Eb = E/2; 
hence,  relabeling  the  horizontal  axis  to Eb/No,  all  curves 
must be  shifted  to  the  left by 3 dB.  If  we  use  a  Gray code  to 
encode  a  pair  of  binary  symbols  into  a  quaternary  symbol 
(forexample:  -1-1 * - 3 ,  - 1 + 1  * - 1 ,   + 1 + 1  * 1, 
+ 1 - 1 * 3), when  symbol  error  occurs, usually  only one of 
the  bits  will  be  in  error;  hence,  the  bit  error probability Pb(e) 
is related to  the  symbol  error  probability by Pb(e) = P(e)/2 
and,  relabeling  the  vertical  axis  to  log Pb(e), all  curves  must 
be  shifted  downwards by log 2 = 0.3.  From  the  relabeled 
Fig. 4 we  can  establish  that  for  a  bit  error  probability of 10 - 6  
and  a  normalized  bandwidth  of B = 1.5,  quaternary  symbols 
require  7  dB  more  energy  per  bit  than  binary  symbols,  and 
only 5.2  dB  more  energy when B = 2.0.  This  penalty  in 

energy is compensated by the  higher  bit  rate  per  bandwidth 
when quaternary  symbols  are  used. 
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Mean Packet Queueing  Delay in a Buffered  Two-User 
CSMAKD System 

HIDEAKI  TAKAGI AND LEONARD KLEINROCK 

Abstract-We consider  a  system of two users of slotted CSMA-CD 
(carrier-sense  multiple-access  with  collision  detection).  The two users  are 
assumed to have  independent  identical  packet  arrival  streams, the 
identical  randomizing  policy for retransmission,  and  an  infinite  capacity 
for storing  queued  packets.  The  mean  packet  delay  (including  the 
queueing  and  retransmission  delays)  is  derived  explicitly. 

We study the  mean  packet  delay  (which  includes  the 
queueing  and  randomized  retransmission  delays) in a  finite 
population  of users,  each of  whom  has  an  independent  packet 
arrival process and an infinite c a p a c i t y  for storing o u t s t a n d -  
ing  packets.  When  the  channel  access  protocol  is  slotted 
ALOHA, this  problem  has  been  addressed in several  papers. 
For  example,  Tobagi  and  Kleinrock [9]  showed  simulation 
results.  Kleinrock  and  Yemini  [2]  developed  a  Wiener-Hopf 
technique  in the  case  of  two  users.  Saadawi  and  Ephremides 
[5] proposed  an  iterative  approximation  method  using  the 
notion  of  user  and  system  Markov  chains.  Sidi  and  Segall  [6] 
found  an  explicit  expression for the mean  delay in the  case  of 
two identical users.  Approximations  for  the  case  of  more 
than  two  users  are  also in [7]  and [8]. 

In  this  correspondence we give  an  exact  analysis  leading  to 
an  explicit  expression for the mean  packet  delay  in  the  case of 
two identical users with  slotted  CSMA  with  collision 
detection,  using  the  same  technique  as  in  [6].  We  assume  a 
constant  packet  length  whose  transmission  time  is  chosen  as 
the  unit  of  time. 

In  CSMA  we  take  into  account  the  nonzero  propagation 
deIay,  denoted by a, so that  a  successful  transmission  takes  1 
+ a units  of  channel  time. We  assume  the collision  detection 
to be  such  that  an  unsuccessful  transmission  lasts b + a, 
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Fig. 1. An  illustration of the  channel  state  in  slotted CSMA with collision 
detection.  (The  embedded  Markov  epochs are shown by 0 . )  

can  recognize  what  has  happened in the  slot.  Clearly,  an 
unsuccessful  transmission  takes up one  slot  and the duration 
of  a  channel  idle  period  is  also  counted by slots.  Let  us  define 

7~ 1-1 1 - b  
b + a  (1) 

where r x l  is  the  ceiling of x (let Til = i for  an  integer i). 
Then,  a  successful  transmission  takes 7 + 1 slots.  See Fig. 1 
for  an illustration of successful  and  unsuccessful  transmis- 
sion  periods.  We  note  that  the  case  without  collision 
detection (b  = 1) is  equivalent  to  slotted  ALOHA  with  slot 
size 1 + a. 

Consider  two  identical  users with independent  arrival 
processes  and  infinite  buffers.  Let X andf(z) be the  mean  and 
the  generating  function,  respectively,  for  the  number of 
arrivals at  each  user in any  slot.  Suppose  that a  user  has  at 
least one  packet  at  the  beginning  of  a  given  slot  when he is 
not transmitting. If the  preceding  slot  was  sensed,busy  (due 
to  the  other  user’s  transmission),  he  does not start  transmis- 
sion with probability 1. If the  preceding  slot  was  sensed  idle 
(including the case where the  preceding slot was an unsuc- 
cessful  transmission  or  the  last  slot of a  successful  transmis- 
sion),  he starts  transmission  with  probability p [and does not 
with probability (p = 1 - p ) ] ,  where 0 < p 5 1. The 
simultaneous  starts of transmission by both  users  result in an 
unsuccessful  transmission.  Otherwise  the  transmission will 
be successful,  since  its start is  perceived in the  first  slot by 
the  other  user, who  then  suppresses  his  transmission. 

Numbering  the  slot  boundaries  as t = 1, 2, - * , let Ql(t)(i 
= 1, 2) be the  number of packets  stored  at  user i at  time t ;  
this  includes  arrival(s) in the  slot [ t - 1, t ]  and  excludes  any 
packet  that  has  successfully  completed  transmission in the 

- 

where a I b I 1. Time  is  slotted with slot  size  equal to b + The  equation  for G(zl, 2 2 )  is  then  given by 
a, and  the start of any  transmission  is  synchronized  with one 
of these  slot  boundaries. I At the  end  of  every  slot,  each  user 

* [G(zI, 2 2 )  - G(zI, 0) - G(Oy Z Z )  + G(0, 011 (3) I 
where 

F(21, 2 2 )  A f ( Z l ) f ( 2 2 ) .  (4) 
Although  we  have  been  unable  to  solve (3) for G(zl, z2), 

we can  obtain  the  mean  queue  length QI = Qz = GI( 1,  1) as 
follows  (following  the  approach in [6]). First,  use  the 
condition G(l,  1) = 1 and  symmetry o(1, 0) = G(0, 1) to 
get 

Then,  from (3), we can  express GI(1, 1) and dG(z,  z)/dzl,=l 
in terms of G I ( l ,  0) where Gl(zl, ZZ) P dG(z1, zz)/dzI. By 
observation  that dG(z,  z)/dzl,,  1 = 2Gl(l, 1) due  to 
symmetry, we find 

slot [ t - 1, t ] .  From  the  above-mentioned  arrival  process 
and  transmission  protocol,  it is clear that  the  process [ Q l ( t ) ,  
Qz(t)]  is a (discrete-time) semi-Markov process. We  can 
then  construct  an embedded Markov chain [QI ‘ ( t  ’), 
Q z ’ ( t ’ ) ] ,  where Ql’( t ’ ) ( i  = 1, 2) is defined  to  be Q l ( t ’ )  
when t‘ is one of those  slot  boundaries  which  are not 
(properly)  included in the  transmission  period.  Obviously, 
these  slot  boundaties  are  the  embedded  Markov  epochs in the 
sense  that  the  process  after t ’ depends  on  the  state  at t ’ . In 
Fig. 1 ,  the  Markov  epochs  are  shown by 0 .  

Now, we define  the  stationary  joint  generating  function  for 
the  queue  length  distribution  at  the  Markov  epochs by 

G(zl, zz)B Prob [QI’  =kl, Qz’ = k 2 ] ~ ~ ~ l ~ ~ ~ z .  (2)  
m a r  

k l = 0  k*=O 

I The  main  reason for using b + a rather  than u as  the  slot size is analytical 
tractability. Lam [3] used 2a as  the  slot size. 

where f ”(2) = dzf(z) /dz2.  
Recall  that G1(1, 1) is  the  mean  queue  length  observed 

only  at  the  embedded  Markov  epochs  defined  above.  To  find 
the  mean  queue  length  at an  arbitrary slot  boundary,  note  that 
the  number  of  stored  packets  can be viewed as  a  “reward” in 
the context  of  the semi-Markov process with  reward (see, 
e.g., [ l ] ) .  Thus, if  we  denote by &kl,  kz) the  expected 
duration  of  the  state (kl,  kz), and by b(kl, kz) the  expected 
contribution  to  the  backlog  accumulation  at  state (k l ,   k z ) ,  
then we have  the  total  mean  queue  length  at  an  arbitrary 
epoch  (or  the  average  reward)  as 

B 
L 

2Q=-  

where 
m m  

L B $ I(kl, k2) Prob [Q1‘ = k l ,  Qz’ =k2] 
kl=0 k2=0 
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Fig. 2. Mean delay  for  two  identical  users of CSMA with collision 
detection. 

and 

B A C  b(k,, k2) Prob [ Q 1 ’ = k , ,   Q 2 ‘ = k 2 ] .  (10) 
c o r n  

k,=O k 2 = 0  

Since  the  length  between  two  successive  Markov  epochs  is r 
+ 1 when  this  interval  involves  a  successful  transmission, 
and  it is 1 otherwise  (either  idle or unsuccessful  transmis- 
sion),  we  clearly  have 

Similarly,  the  backlog  accumulation  is  expressed  as 

l + a  

i =  1 

= ( k -  1)(7+ 1)+x(7+ 1)(7+2)+- . 1-b 
b+a  

Substituting (1 1)-(13) into (9) and (lo), and  making  use  of 
( 3 ,  we  have  the  expressions  for L and B reduced  to 

and 

The  mean  queue  length  at  each  user  at  an  arbitrary  slot 
boundary  is  given by 

+ h 2 7 ( 7 + 1 ) - x ( 7 - g a )  . (16) 

Since X is  the  mean  number of arrivals  per  user in  a  slot of 
length b + a, the total  throughput  of  this  system  is  given by 
2X/(b + a). By Little’s  result [3], the  mean  response  time D 
is given by 

Substitutions of  the  expression  for G ,( 1, 0) and G ,( 1, 1) in 
(6) and (7) into (16) and some manipulation  finally  yield 

D=l+a+(b+a)  

[ (1-2pp)(kl+k2+2X)+2ppB(kl+k2, 7 )  k l 2 1 ,   k 2 2 l  

where B(k, r )  is  the  average  accumulated  backlog  (in In  Fig. 2 ,  we  show  the  mean  packet  delay  for  given  values 
packets.slots)  during  a  successful  transmission  period (of of throughput,  each  being  optimized  with  respect t o p ,  in the 
length 7 + 1 slots)  which  begins  with k packets,  and is given case  of  Poisson  arrivals  for  which f(z) = exp [h(z - I)]. 



For  comparison, we also  show  the  mean  response  time in a 
perfect  scheduling  system  (i.e.,  an M/D/1 queue with 
arrival  rate 2X and  service  time 1 + a) .  This is  a plot  of 

D = ( l + a )  * 
1 - X ( 1  + a )  
1 -2X(1 + a )  

against  the  total  throughput  of 2X. An  interesting  observation 
in  Fig.  2  is  that D for b = 0.75 is  mostly greater than D for b 
= 1.  This  is  because  when a = 0.1  and b = 0.75,71 percent 
of  the  second  slot  in  every  successful  transmission is wasted 
(note  that (1 + a) / (b  + a) = 1.294  is  0.71  short of  the next 
integer  2).  The  closeness of  the  curves  for b = 0.25  and b = 
0.5 can  be  explained  similarly. 
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A Simulation Study of Clock Recovery in QPSK  and 
9QPRS Systems 

N.  A. D’ANDREA AND U. MENGALI 

Abstract-Computer simulation is  employed to assess  jitter  perform- 
ance of a clock  recovery  circuit as a function  of the  characteristics of the 
rectifier  being used. Several  types of rectifiers are compared, some 
operating at baseband,  others  at  intermediate  frequency (IF). 

It is shown that  the  best choice between  them  depends  both on the 
modulation format  and on the excess bandwidth factor  of the  pulse 
spectrum. In QPSK systems,  fourth-law rectifiers  outperform  the  others 
for  rolloff  factors up to 0.2 while,  for higher  values,  baseband ahsolute- 
value  rectifiers are preferable. In the case of 9QPRS, baseband absolute- 
value  rectifiers  provide  jitter  reductions of  one order of magnitude at  high 
signal-to-noise ratios. 
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I .  INTRODUCTION 
In  synchronous  pulse  amplitude  modulation,  clock  infor- 

mation  is  necessary  at  the  receiver to  detect  the  transmitted 
symbols  correctly.  Clock  recovery  is  a  crucial  function  in 
systems  operating  over  narrow-band  channels,  because  even 
small  timing  errors  can  greatly  degrade  the  overall  perform- 
ance., A popular  method  of  clock  extraction  consists in 
passing the incoming  signal  (either  at IF or at  baseband)  into 
a  zero-memory  device  with  an  even  nonlinearity  (for  short,  a 
rectifier)  and  then  feeding the  resulting  waveform  to  a  phase- 
locked  loop or to  a  bandpass  filter  tuned to  the pulse 
repetition  frequency [ 11-[8]. Many forms of  nonlinearities 
may be  used  for  this  purpose.  The  most  common  are  the 
square-law  rectifier  (SLR)  and  the  absoulte-value  rectifier 
(AVR),  but  other  types  have  been  considered  [6]. 

Clock  recovery  with  SLR  followed by resonant  circuit  has 
been  thoroughly  analyzed in [3]. Other things  being  equal,  its 
behavior  depends on  the  excess bandwidth  of the  driving 
pulses  in  such  a  way  that  performance  is  satisfactory for 
medium  and large values  of  rolloff  factor a ,  but  it  becomes 
poor  as a decreases.  In  the  extreme  case  of  minimum 
bandwidth  Nyquist  pulses (a = 0), this  method  of  clock 
recovery  fails. 

Therefore,  when  dealing with  strongly  band-limited 
pulses,  nonlinearities  other  than  square-law are  required. 
Unfortunately,  clock  circuits  implemented  with  non-square- 
law  devices  are  hardly  tractable  mathematically,  and  in fact 
their  performance  is  mainly  known  from  simulations.  Refer- 
ences  [2]  and  [4]  give  results  for  timing  extractors  equipped 
with  SLR’s or with AVR’s.  It  appears that  AVR’s  hold  a 
substantial  advantage over  SLR’s. A fourth-law  rectifier 
(FLR)  has  been  suggested in [6] in place  of  an  SLR  for 
applications  with  rolloff as  low  as  0.12,  as  in  the Bell  System 
209  data  set.  Analysis  shows  that  in  these  conditions an  FLR 
performs  well,  while  an  SLR  does  not. 

However  useful  the  above  results  are,  they  still  leave  room 
for  further  questions.  For  example,  what  is  the  best  choice 
between SLR,  AVR,  and  FLR  when  the rolloff  varies 
between zero  and  unity? Is this  choice  independent  of  the 
signal-to-noise  ratio? For fixed  rectifier  and  rolloff,  how 
does  the  jitter  vary  as  a  function  of  the  bandwidth of the  clock 
filter? 

In  this  paper  we  address  these  problems by means  of 
computer  simulation.  Our  study  concentrates  on  timing 
recovery in quaternary  phase-shift  keyed (QPSK) systems 
and  on  nine-state  quadrature  partial  response  systems 
(9QPRS). 

11. SYSTEM MODEL 
Fig. 1 shows  the  block  diagram of a  clock  recovery  circuit 

with IF-rectification.  The  input  consists  of  signal s(t)  plus 
white  Gaussian  noise w(t) with  double-sided  spectral  density 
No/2. The  filter  output is  written  as 

x( t )=xI ( t )  COS w, t -xQ(t)  sin w,t (1) 

where wc is  the IF radian  frequency  and xdt) and xa(t) are  the 
in-phase  and  quadrature  components  of x(t) .  

Rectification of x(t )  yields  the  following  expressions of the 
rectifier  output  (terms  centered  about  multiples  of  the IF 
frequency  are  ignored,  as they are rejected by the  clock 
filter): 

y( t )  = J X 1 2 ( f )  + X Q 2 ( t )  (2) 
for AVR and 

y( t )  = X12(t) + xQ2(t) (3) 


